摘要:
传统的多目标进化算法(MOEA)对于低维连续的多目标优化问题已经具有良好的性能,但是随着优化问题目标维数的增加,优化难度也将剧增,主要原因是算法本身搜索能力不足,维数增加时选择压力变小,收敛性和分布性冲突难以平衡.利4用连续多目标优化问题的特性,针对高维多目标优化的难点所在,提出了一种在决策空间的定向搜索策略(decision space,简称DS),该策略可与基于支配关系的MOEA相结合.DS首先对优化问题进行采样分析,对问题特性进行解析,得到收敛性子空间控制向量和分布性子空间控制向量.将算法搜索过程分为收敛性搜索阶段和分布性搜索阶段,分别对应收敛性子空间和分布性子空间,在不同阶段搜索时,利用采样分析结果,对生成子代个体的区域进行宏观的影响.将收敛性和分布性分阶段考虑,避免了收敛性和分布性难以平衡的难点,同时,具体在某一阶段内搜索资源相对集中,一定程度上增加了算法的搜索能力.实验结合了DS策略的NSGA-Ⅱ,SPEA2算法与原NSGA-Ⅱ,SPEA2算法进行实验对比,并以DS-NSGA-Ⅱ为例,与其他高维算法MOEAD-PBI,NSGA-Ⅲ,Hype,MSOPS,LMEA进行对比实验.实验结果表明,DS策略的引入,使得NSGA-Ⅱ,SPEA2算法在高雏多目标优化问题上的性能有了显著提高,DS-NSGAⅡ与现有的经典高维多目标算法相比有较强的竞争力.