基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于多源社交网络上的用户信息实现跨网络链路预测具有重要的意义,有助于进行用户推荐、行为分析、偏好推荐.传统的链路预测技术仅考虑社交网络上的局部结构特征,有些网络规模庞大、节点稀疏、存在大量孤立点,易导致建模困难、计算效率低等问题.基于此,提出了一种基于元路径选择和矩阵分解的跨社交网络链路预测方法.首先,根据跨社交网络中用户间的社会关系构建一个网络图;然后,利用元路径的节点活跃度和边的活跃度自动提取特征;接下来,利用矩阵分解将目标类型对象相关的元路径信息在低维空间上显示;最后,利用集成分类方法对链接模型进行优化.实验数据表明,提出的链路预测方法具有较高的准确性.
推荐文章
基于矩阵分解的DeepWalk链路预测算法
链路预测
神经网络
DeepWalk
网络表示学习
矩阵分解
相似度矩阵
基于邻域结构和对称非负矩阵分解的加权网络链路预测
加权网络
链路预测
对称非负矩阵分解
最小生成树
移动社交网络中基于共同邻居网络中心度的链路预测方法
网络中心度
共同邻居
链路预测
移动社交网络
基于矩阵分解的DeepWalk链路预测算法
链路预测
神经网络
DeepWalk
网络表示学习
矩阵分解
相似度矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 元路径选择和矩阵分解的跨社交网络链路预测
来源期刊 计算机科学与探索 学科 工学
关键词 多社交网络 链路预测 元路径 矩阵分解
年,卷(期) 2019,(9) 所属期刊栏目 学术研究
研究方向 页码范围 1459-1470
页数 12页 分类号 TP391
字数 1783字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于戈 东北大学计算机科学与工程学院 426 6587 38.0 64.0
2 申德荣 东北大学计算机科学与工程学院 111 1289 18.0 32.0
3 寇月 东北大学计算机科学与工程学院 68 816 12.0 26.0
4 聂铁铮 东北大学计算机科学与工程学院 69 854 13.0 27.0
5 王瑶 东北大学计算机科学与工程学院 3 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (127)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多社交网络
链路预测
元路径
矩阵分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导