基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对藏文文本情感计算研究,将CNN-LSTM深度学习模型引入到藏文微博情感计算,弥补了少数语言自然语言处理研究的缺乏,对藏文研究具有一定的推动作用.针对藏文语料的不公开,通过藏文同反义情感词典对标注好的藏文微博语料中情感词汇的同反义词进行替换,进一步扩充了藏文微博语料,以适合深度学习对大数据语料的要求.藏文微博分词后,利用Word2vec工具训练出藏文微博词向量模型,提高特征向量对文本深层次语义信息的表达;然后,将训练好的词向量和对应的情感倾向标签直接引到由卷积层、池化层、LSTM层、全连接层等构成的CNN-LSTM模型,在每一层的输出做归一化处理;最后经过Softmax分类器对藏文微博进行情感倾向分类,并与LSTM以及传统的情感词典做了实验对比.结果表明,该算法获得了较好的分类效果.
推荐文章
基于语义空间的藏文微博情感分析方法
藏语微博
情感分类
语义空间
文本聚类
语义簇
藏文情感词典的构建及微博情感计算研究
中文情感词典
藏汉情感词典
藏文情感词典
藏文微博
权值
情感分类
基于语义空间的藏文微博情感分析方法
藏语微博
情感分类
语义空间
文本聚类
语义簇
基于音节标注的藏文自动分词研究
藏文
分词
序列标注
最大熵
条件随机场
最大间隔Markov网络模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习算法的藏文微博情感计算研究
来源期刊 计算机技术与发展 学科 工学
关键词 深度学习 藏文微博 词向量 情感计算
年,卷(期) 2019,(10) 所属期刊栏目 应用开发研究
研究方向 页码范围 55-58,99
页数 5页 分类号 TP391.1
字数 3045字 语种 中文
DOI 10.3969/j.issn.1673-629X.2019.10.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田芳 青海大学信息化技术中心 20 172 6.0 13.0
2 孙本旺 青海大学计算机技术与应用系 3 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (85)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
藏文微博
词向量
情感计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导