作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高协同过滤推荐系统对于稀疏数据的推荐效果,提出一种基于深度神经网络和改进相似性度量的推荐算法.分析普通Jaccard相似性度量指标处理稀疏数据集的不足之处,对Jaccard相似性提出改进方案.设计交互的两个自编码器,一个自编码器利用显式反馈数据分析用户对于项目的偏好,其优化目标为最小化重建误差和正则成对排列损失;另一个自编码器利用隐式反馈数据分析用户对于项目的潜在偏好,其学习目标是采样数据集的负项集,利用隐式反馈数据增强显式反馈自编码器的学习效果.基于不同规模稀疏数据集的实验结果显示,该算法有效地增强了稀疏数据集的推荐准确率,实现了合理的推荐效率.
推荐文章
基于改进的协同过滤相似性度量算法研究
相似性度量
工程测量
工业控制
杰卡德相似性
基于MLP改进型深度神经网络学习资源推荐算法
学习资源推荐
深度学习
卷积神经网络
word2vec
多层感知机
基于云填充和混合相似性的协同过滤推荐算法的研究
协同过滤推荐算法
云填充
时序行为影响力
Jaccard系数
基于最大偏差相似性准则的BP神经网络短期电力负荷预测算法
需求响应
电力负荷预测
BP神经网络
最大偏差相似性准则
聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络和改进相似性度量的推荐算法
来源期刊 计算机应用与软件 学科 工学
关键词 协同过滤 推荐系统 相似性度量 自编码器 深度神经网络 显式反馈
年,卷(期) 2019,(11) 所属期刊栏目 算法
研究方向 页码范围 286-293,300
页数 9页 分类号 TP391
字数 7127字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.11.046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邹锋 广州商学院信息技术与工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (32)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(8)
  • 参考文献(8)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
推荐系统
相似性度量
自编码器
深度神经网络
显式反馈
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导