已有的利用图像处理进行物体清点的方法对物体本身和背景条件的统一性要求较高,不具备通用性和较高抗干扰能力,而一些准确率较高的算法计算复杂度高,难以满足生产流水线上实时性要求,因此提出一种高灵活性、高鲁棒性及通用的采用候选框提取的可变形部件模型快速物体清点方法,使用快速特征金字塔来训练可变形部件模型,并通过对物体梯度方向直方图(Histograms of Oriented Gradients,HOG)特征按能量大小区域旋转的方法来提高算法的抗旋转能力;然后使用改进的基于先验信息的edge boxes算法提取目标候选框,再对候选框使用训练好的可变形部件模型进行检测;检测出的目标数量即为物体数量.设计了多组对照试验,结果证明,该方法具有较高的通用性和鲁棒性,在准确性和检测效率上也完全能够达到工业生产中实时检测系统的要求.