基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于可变形部件模型DPM的目标检测算法采用方向梯度直方图HOG进行特征表示,由于HOG无法处理模糊的边界而且忽略了平滑的特征区域,从而影响了DPM算法的性能.为了提高DPM的性能,提出了一种基于稀疏表示的可变形部件模型目标检测的方法.该方法利用稀疏编码构建一种新的特征描述子来取代原可变形部件所使用的方向梯度直方图,新的特征描述子能够描述物体更多的信息,对图像中的噪声不敏感.实验结果表明,该方法在PASCAL VOC 2012数据集上提高了原可变形部件模型算法的精度.
推荐文章
基于可变形部件模型的安全头盔佩戴检测
目标检测
可变形部件模型
梯度方向直方图
局部二值模式
支持向量机
基于可变形部件模型的台标识别方法
台标识别
可变形部件模型
方向梯度直方图
隐式支持向量机
隐式线性判别分析
颜色直方图
加权部件
基于形态成分稀疏表示的红外小弱目标检测
小弱目标检测
稀疏表示
形态成分分析
自适应分类字典
基于可变形部件模型及稀疏特征的行人检测
图像处理
人体检测
稀疏特征
部件模型
弱标签隐藏变量支持向量机学习算法
级联检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示的可变形部件模型目标检测
来源期刊 计算机工程与科学 学科 工学
关键词 可变形部件模型 目标检测 稀疏表示 稀疏编码
年,卷(期) 2017,(5) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 999-1004
页数 6页 分类号 TP391.4
字数 5255字 语种 中文
DOI 10.3969/j.issn.1007-130X.2017.05.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈姝 湘潭大学信息工程学院 16 54 4.0 6.0
2 袁奕珊 湘潭大学信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (8)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
可变形部件模型
目标检测
稀疏表示
稀疏编码
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导