基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于鲁棒主成分分析的显著目标检测方法,在显著目标出现不同颜色时不能产生一致的显著值,提出基于稀疏表示模型的显著目标检测方法.该方法用l1范数约束显著目标的表示系数,并引入拉普拉斯图正则项保持显著目标超像素的近邻关系,使特征相似的超像素有相似的表示系数,检测出的显著目标内部更平滑,显著值趋于一致.在2个公开的显著目标数据集上的实验表明,所提方法是有效的.
推荐文章
基于形态成分稀疏表示的红外小弱目标检测
小弱目标检测
稀疏表示
形态成分分析
自适应分类字典
基于HTP稀疏表示的鲁棒目标追踪方法
目标追踪
稀疏表示
硬阈值追踪
计算量
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
基于稀疏表示的印花织物疵点检测
印花织物
疵点检测
稀疏表示
盲源分离
形态成分分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示模型的显著目标检测
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 鲁棒主成分分析 显著目标检测 稀疏表示 图正则
年,卷(期) 2019,(2) 所属期刊栏目 研究论文
研究方向 页码范围 185-191
页数 7页 分类号 TP391
字数 4253字 语种 中文
DOI 10.7631/issn.1000-2243.18220
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晓云 福州大学数学与计算机科学学院 76 590 13.0 21.0
2 张萌 福州大学数学与计算机科学学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
鲁棒主成分分析
显著目标检测
稀疏表示
图正则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导