基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统人脸识别方法所提取的人脸信息特征较为单一,且分类算法存在局限性的问题,在多特征信息融合的基础上结合深度信念网络(DBN)对人脸进行深度训练并进行识别.首先采取对比度受限自适应均衡化对人脸图像进行预处理,从而削弱光照对人脸识别的影响;然后,将提取到的人脸图像的TPLBP纹理特征和HOG结构特征进行特征融合,得到信息互补的融合特征;最后,将降维后的融合特征作为DBN的输入,通过对DBN深度模型的参数的动态搜索确定最佳值后,基于训练好的深度信念网络实现人脸图像样本的识别.以ORL、AR和Yale-B人脸数据库为基础进行试验,试验结果表明本文方法相较于传统的SVM、KNN和DBN算法准确率有很大提高,鲁棒性强.
推荐文章
基于 LBP/VAR 与 DBN 模型的人脸表情识别
深度信念网络
表情识别
局部二进制模式
深度学习
基于HOG—LBP特征提取的人脸识别研究
梯度方向直方图
局部二值模式
特征提取
人脸识别
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于TPLBP/HOG特征与DBN深度模型的人脸识别研究
来源期刊 测控技术 学科 工学
关键词 深度信念网络 TPLBP纹理 HOG PCA RBM
年,卷(期) 2019,(6) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 5-10
页数 6页 分类号 TP391.4
字数 5215字 语种 中文
DOI 10.19708/j.ckjs.2019.06.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈鹏展 华东交通大学电气与自动化工程学院 25 89 5.0 8.0
2 章新志 华东交通大学电气与自动化工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (59)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度信念网络
TPLBP纹理
HOG
PCA
RBM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
论文1v1指导