原文服务方: 计算机应用研究       
摘要:
考虑到现实环境中的人脸图片在角度、光线、分辨率上的复杂程度,对Inception-ResNet-V1网络结构进行了改进,同时完成了数据集制作、超参数调节等相关工作,并在家庭服务机器人平台上进行了实验研究.实验结果表明,改进的网络结构在LFW测试集上准确率达到99.22%,高于原始网络结构的99.05%;在亚洲人脸数据集上准确率达到99.20%,高于原始网络结构的97.10%;在自建非匹配人脸数据集上误识别率为3.43%,低于原始网络结构的12.28%.可以看出,与原始网络结构相比,改进网络结构提升了人脸识别的准确率且降低了误识别率.
推荐文章
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于多尺度分析的人脸识别算法研究
人脸识别
多尺度分析
轮廓特征
角点特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的人脸识别算法研究
来源期刊 计算机应用研究 学科
关键词 家庭服务机器人 人脸识别 深度学习 Inception-ResNet-V1
年,卷(期) 2020,(5) 所属期刊栏目 系统应用开发
研究方向 页码范围 1432-1436
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.09.0815
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张奇志 北京信息科技大学自动化学院 111 209 8.0 10.0
2 周亚丽 北京信息科技大学自动化学院 104 252 8.0 12.0
3 胡亚洲 北京信息科技大学自动化学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (75)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(6)
  • 参考文献(2)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
家庭服务机器人
人脸识别
深度学习
Inception-ResNet-V1
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导