基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决在深度学习提取人脸图像特征时,忽略其局部结构特征和缺乏对其旋转不变性学习的问题,提出了一种基于单演局部二值模式(MBP)与深度学习相结合的高效率人脸识别方法.首先,用多尺度的单演滤波器对图像进行滤波,得到幅值和方向信息;其次,用LBP算法和象限比特的方法进行编码,分块计算组合其直方图特征;然后,将提取的单演特征作为深度信念网络(DBN)的输入,逐层训练优化网络参数,得到优异的网络模型;最后,将训练好的DBN网络在ORL人脸数据库上进行人脸识别实验,得到的识别率为98.75%.结果表明,相较于已知的人脸识别方法,MBP+DBN算法在人脸识别中具有一定的优势,为图像特征提供一种新的识别方法.
推荐文章
基于深度学习的人脸识别算法研究
家庭服务机器人
人脸识别
深度学习
Inception-ResNet-V1
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MBP算法和深度学习的人脸识别
来源期刊 河北工业科技 学科 工学
关键词 模式识别 深度信念网络 单演信号分析 单演局部二值模式 特征提取
年,卷(期) 2019,(1) 所属期刊栏目 应用技术
研究方向 页码范围 33-38
页数 6页 分类号 TP391
字数 5164字 语种 中文
DOI 10.7535/hbgykj.2019yx01006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨明 中北大学理学院 38 158 8.0 10.0
2 周慧敏 中北大学理学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (28)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (16)
二级引证文献  (3)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(1)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
模式识别
深度信念网络
单演信号分析
单演局部二值模式
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业科技
双月刊
1008-1534
13-1226/TM
大16开
河北省石家庄市裕华东路70号
18-327
1984
chi
出版文献量(篇)
2570
总下载数(次)
4
总被引数(次)
14826
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导