基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高基于图像的三维重建的重建效果,基于深度学习的方法已经成为近年来研究的重点.针对目前存在的方法中特征提取效果差、重建细节缺失且计算量巨大的问题,提出一种改进卷积神经网络的单个物体重建方法.通过加入改进的Inception-resnet模块来提升网络的特征提取能力,采用多种网络结构提取多特征,通过多特征依次输入3D-LSTM模块中以增强单幅图像的重建效果.实验结果表明,该方法不仅能够得到更好的重建效果,重建出更多的细节,同时在训练中花费更少的时间.
推荐文章
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于数据驱动的卷积神经网络电容层析成像图像重建
卷积神经网络
电容层析成像
图像重建
颗粒浓度分布
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进卷积神经网络的单幅图像物体重建方法
来源期刊 计算机应用与软件 学科 工学
关键词 卷积神经网络 三维重建 单幅图像 计算机视觉
年,卷(期) 2019,(6) 所属期刊栏目 图像处理与应用
研究方向 页码范围 190-195
页数 6页 分类号 TP3
字数 3175字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.06.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田元 华中师范大学教育信息技术学院 17 56 5.0 6.0
2 夏丹 华中师范大学教育信息技术学院 15 70 4.0 8.0
3 陈加 华中师范大学教育信息技术学院 2 13 1.0 2.0
4 张玉麒 华中师范大学教育信息技术学院 2 9 1.0 2.0
5 叶立志 华中师范大学教育信息技术学院 1 0 0.0 0.0
6 陈亚松 华中师范大学教育信息技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (10)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(10)
  • 参考文献(2)
  • 二级参考文献(8)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
三维重建
单幅图像
计算机视觉
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导