基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱图像中的异常像元往往具有在图像中出现的概率低和游离于背景数据云团之外的特点,如何"自动"确定这些异常像元是高光谱遥感图像处理中的一个重要研究方向.经典的高光谱异常检测方法一般从图像的统计特性入手,广泛应用的RXD异常检测算法通过计算图像的2阶统计特征,可以直接给出异常点的分布情况,算法复杂度低,但缺点是没有考虑到图像的高阶统计信息.基于独立成分分析的异常检测算法虽然考虑了高阶统计量对异常点的敏感性,但需要反复迭代提取异常成分后,再对提取后的成分进行异常检测.该文提出一种基于协峭度张量的异常检测算法,该算法不需要事先提取异常成分,可以直接对观测像元进行逐一检测,从而给出异常点的分布情况.基于模拟数据和真实数据的实验结果表明,该方法能够在检测出异常像元的同时更好地压制背景信息、减小虚警率,从而提高异常检测精度.
推荐文章
基于多尺度谱峭度图的遥测振动信号异常检测
遥测振动信号
LMD分解
谱峭度
时频分布
CZT变换
改进协同表示的高光谱图像异常检测算法
高光谱图像
异常检测
异常像元
协同表示
双窗口
基于模式识别技术的高光谱遥感图像检测
模式识别
高光谱图像
遥感图像检测
图像预处理
图像拼接
过热区域确定
基于协稀疏正则化的异常行为检测模型
正常特征
异常特征
分析向量
稀疏
协稀疏
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于协峭度张量的高光谱图像异常检测
来源期刊 电子与信息学报 学科 工学
关键词 高光谱图像 异常检测 高阶统计 协峭度张量
年,卷(期) 2019,(1) 所属期刊栏目 论文
研究方向 页码范围 150-155
页数 6页 分类号 TP75
字数 3600字 语种 中文
DOI 10.11999/JEIT180280
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 耿修瑞 中国科学院电子学研究所 19 247 8.0 15.0
2 孟令博 中国科学院空间信息处理与应用系统技术重点实验室 4 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
异常检测
高阶统计
协峭度张量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
论文1v1指导