原文服务方: 中国机械工程       
摘要:
利用层次化分块正交匹配算法(HBW-OOMP)的高稀疏性和运算速度快等优点,提出了一种基于K-奇异值分解(K-SVD)字典和HBW-OOMP算法的故障轴承诊断方法.首先利用K-SVD自学习训练方法得到包含冲击成分的冗余字典,克服了固定结构字典适应性不强的缺点.然后采用基于分块思想的HBW-OOMP算法进行原子的选取和稀疏系数的求解,以重构信号包络谱峭度最大为终止条件,自适应确定分解次数.最后应用所提方法对仿真信号和故障轴承实验信号进行故障特征提取,结果表明该方法能够有效提取强背景噪声下故障特征成分,具有一定的应用前景.
推荐文章
基于局部均值分解和K近邻算法的滚动轴承故障诊断方法
滚动轴承
局部均值分解
K近邻算法
特征提取
故障诊断
基于Hilbert包络谱奇异值和IPSO-SVM的滚动轴承故障诊断研究
EMD
IMF
改进粒子群算法
支持向量机
滚动轴承
基于EMD和优化K-均值聚类算法诊断滚动轴承故障
滚动轴承
故障诊断
故障程度
EMD
K-均值聚类
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断
来源期刊 中国机械工程 学科
关键词 稀疏表示 K-奇异值分解 层次化分块正交匹配 块处理 包络谱峭度
年,卷(期) 2019,(4) 所属期刊栏目 机械基础工程
研究方向 页码范围 406-412
页数 7页 分类号 U270.7
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2019.04.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张卫华 西南交通大学牵引动力国家重点实验室 339 5616 37.0 55.0
2 李永健 五邑大学轨道交通学院 6 9 2.0 3.0
6 张文颢 西南交通大学牵引动力国家重点实验室 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (36)
参考文献  (14)
节点文献
引证文献  (6)
同被引文献  (23)
二级引证文献  (3)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
稀疏表示
K-奇异值分解
层次化分块正交匹配
块处理
包络谱峭度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导