基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数.因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法.首先通过符号聚合近似(SAX)算法在不同字符集尺度下将雷达信号转换为符号化序列;然后联合各符号序列的信息熵值,组成MSIE特征向量;最后,使用k邻近算法(k-NN)作为分类器实现雷达信号的分类识别.通过仿真6种典型的雷达信号进行验证,结果表明该方法在信噪比(SNR)为5 dB时,不同雷达信号的识别正确率大于90%,并且优于传统的基于复杂度特征(盒维数和稀疏性)的识别方法.
推荐文章
基于多权重属性测度和信息融合的辐射源识别算法
辐射源识别
层次分析
熵值
粗糙集
信息融合
基于核函数支持向量机的雷达辐射源识别
雷达辐射源识别
核函数
支持向量机
基于时频与快速熵的IFF辐射源个体识别方法
敌我识别
辐射源个体识别
时频分析
样本熵
基于DBN的辐射源信号识别算法
雷达辐射源
时频变换
识别
深度信念网络
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度信息熵的雷达辐射源信号识别
来源期刊 电子与信息学报 学科 工学
关键词 雷达信号识别 符号聚合近似算法 多尺度信息熵 k邻近算法
年,卷(期) 2019,(5) 所属期刊栏目 论文
研究方向 页码范围 1084-1091
页数 8页 分类号 TN95
字数 6862字 语种 中文
DOI 10.11999/JEIT180535
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李冰 西南交通大学电气工程学院 28 371 11.0 19.0
2 金炜东 西南交通大学电气工程学院 295 3889 30.0 49.0
3 黄颖坤 西南交通大学电气工程学院 6 15 3.0 3.0
4 葛鹏 西南交通大学电气工程学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (53)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (17)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
雷达信号识别
符号聚合近似算法
多尺度信息熵
k邻近算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
论文1v1指导