基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对实际应用中诸多数据集标签部分缺失、无定位标注等问题,提出了基于多尺度特征卷积神经网络的弱监督定位算法.其核心思想是利用神经网络分层的特性,在多层卷积层上使用梯度加权类激活映射,生成梯度金字塔模型,并通过均值滤波计算特征质心位置,利用置信强度映射和阈值梯减模块产生连接的像素段,围绕最大边界标注进行弱监督定位.在标准测试集上的实验结果表明,该算法能够在存在大量类别、多尺度图像的情况下完成目标定位,具有较高的精确度.
推荐文章
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于多尺度卷积神经网络的立体匹配算法研究
多尺度
卷积神经网络
匹配代价
代价聚合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度特征卷积神经网络的目标定位
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 梯度金字塔 弱监督定位
年,卷(期) 2019,(16) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 115-122
页数 8页 分类号 TP391
字数 6896字 语种 中文
DOI 10.3778/j.issn.1002-8331.1812-0311
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙俊 江南大学物联网工程学院 186 1552 21.0 30.0
2 周以鹏 江南大学物联网工程学院 1 2 1.0 1.0
3 马栋梁 江南大学物联网工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (27)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (13)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
梯度金字塔
弱监督定位
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导