基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
考虑到电商平台的日益发展,使用人工分类的方式对服装进行分类无法满足目前的需求.本文从实际的应用场景出发,针对于服装图像进行分类时会受到背景因素干扰、服装图像关键部位信息以及算法模型运行的的硬件要求三个方面,分别进行改进设计.提出:1)消除背景的干扰;2)图像局部信息的利用;3)模型的轻量化处理.最终得到了在满足准确性的前提下,可以在普通低配置PC端进行运行的算法模型,提升了工作效率,同时节省了成本.
推荐文章
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于并行残差卷积神经网络的多种树叶分类
树叶分类
卷积神经网络
残差学习
图像特征提取
批量归一化
测试效果对比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于轻量化卷积神经网络的服装分类方法
来源期刊 计算机系统应用 学科
关键词 卷积神经网络 图像分类 轻量化
年,卷(期) 2019,(3) 所属期刊栏目 研究开发
研究方向 页码范围 223-228
页数 6页 分类号
字数 4724字 语种 中文
DOI 10.15888/j.cnki.csa.006821
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘雁飞 浙江理工大学信息学院 4 6 2.0 2.0
2 罗梦研 浙江理工大学信息学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (2)
1988(2)
  • 参考文献(2)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
卷积神经网络
图像分类
轻量化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导