基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通常泵组件的调节主要依靠工程师经验,难以保证水泵在所有时段内均高效运行,易造成能源浪费,对此提出了以效率模型为依据的泵站优化调度方法.为减小误差,使用泵站实际运行数据基于BP神经网络训练水泵特性.在此基础上,利用训练后的数据初始化种群,以泵站效率之和最小为目标,建立泵站优化调度数学模型,设定水量、压力和高效区等约束条件,采用改进的遗传算法求解水泵组合方案及各泵运行参数.结果 表明,改进遗传算法对泵站调度的优化效果明显,可适用于泵站的优化节能运行.研究成果为泵站优化调度运行提供了一种新方法.
推荐文章
改进遗传算法优化BP神经网络的语音情感识别
遗传算法
反向传播神经网络
语音情感识别
自适应
优化
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
遗传算法优化的BP神经网络税收模型
遗传算法
神经网络
税收模型
基于遗传算法优化BP神经网络的高炉喷煤优化
高炉炼铁
喷煤优化
遗传算法
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络与改进遗传算法的泵站优化调度
来源期刊 水电能源科学 学科 工学
关键词 BP神经网络 改进遗传算法 供水泵站 优化调度
年,卷(期) 2019,(5) 所属期刊栏目 机电与控制工程
研究方向 页码范围 168-171
页数 4页 分类号 TU99
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (9)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
改进遗传算法
供水泵站
优化调度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导