基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱图像分类领域中特征利用不足的问题,提出了一种基于生成对抗网络(Generative Adversarial Networks,GANs)的高光谱图像分类方法.根据高光谱图像空间域和光谱域的相关性,利用GANs方法,挖掘其深层特征,生成可分性更高的高光谱图像,并通过支持向量机(Support Vector Machine,SVM)对生成的高光谱图像进行分类.使用两组高光谱数据进行实验,结果表明,该方法能够在少量高光谱波段的情况下,对抗学习到较好的生成模型,使得生成的高光谱图像在地物分类实验中具有更高的分类精度.
推荐文章
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于特征重标定生成对抗网络的图像分类算法
生成对抗网络
图像分类
特征重标定
深度学习
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的高光谱图像分类
来源期刊 计算机工程与应用 学科 工学
关键词 高光谱图像分类 生成对抗网络(GANs) 特征挖掘
年,卷(期) 2019,(22) 所属期刊栏目 图形图像处理
研究方向 页码范围 172-179
页数 8页 分类号 TP75
字数 4290字 语种 中文
DOI 10.3778/j.issn.1002-8331.1807-0164
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨东勇 浙江工业大学信息工程学院 69 521 11.0 19.0
2 李吉明 浙江警察学院计算机与信息技术系 7 29 2.0 5.0
3 陈方杰 浙江工业大学信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (26)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
生成对抗网络(GANs)
特征挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导