作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
互联网的快速发展,每天都产生了大量的信息,信息过载[1-2]十分严重,解决该问题的常用方法有两个,通过搜索引擎查询自己所需要的信息,这种方式有一个很大的缺点是,很多可能会使得引发人们兴趣的信息被埋没了,而推荐系统是能很好解决该问题的有效方法,推荐系统常用的方法是协同过滤算法,本文对协同过滤算法常见问题做了一些研究.
推荐文章
协同过滤算法的研究
推荐系统
协同过滤
基于用户的算法
基于物品的算法
基于GPU的并行协同过滤算法
协同过滤
图形处理器
统一计算设备框架
基于Hadoop的多特征协同过滤算法研究
协同过滤
Hadoop
灰色关联度
贝叶斯概率
融合协同过滤的线性回归推荐算法
线性回归
协同过滤
相似性
推荐算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 协同过滤算法的研究
来源期刊 电脑知识与技术 学科 工学
关键词 推荐系统 协同过滤 个性化
年,卷(期) 2019,(3) 所属期刊栏目 数据库与信息管理
研究方向 页码范围 20-21
页数 2页 分类号 TP311
字数 1590字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴经纬 广东工业大学信息工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (112)
共引文献  (604)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (0)
1912(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(18)
  • 参考文献(0)
  • 二级参考文献(18)
2008(13)
  • 参考文献(0)
  • 二级参考文献(13)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
协同过滤
个性化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术
旬刊
1009-3044
34-1205/TP
大16开
安徽省合肥市
26-188
1994
chi
出版文献量(篇)
58241
总下载数(次)
228
总被引数(次)
132128
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导