基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
票房与评分作为评价一部电影最重要的两个方面,传统研究考虑他们的影响因素时,只考虑多个影响因素对其中一个因素的影响(即"多对一").本文提出基于多分类Logistic回归模型,构造一种单一影响因素对多个因素(即"一对多")是否产生影响的分析方法,并从理论角度对该方法给予了证明;并将该方法应用在2017年和2018年国产电影数据中,分析了明星影响力对电影票房评分两方面的影响,发现明星影响力对电影票房评分没有显著影响.
推荐文章
一个有效的基于GBRT的早期电影票房预测模型
梯度回归树(GBRT)
电影早期因素
电影票房预测
影响力度量
基于IP品质因子的早期电影票房预测研究
电影票房预测
多元线性回归
支持向量机
BP神经网络
IP品质
一个有效的基于GBRT的早期电影票房预测模型
梯度回归树(GBRT)
电影早期因素
电影票房预测
影响力度量
我国电影票房收入增长对GDP增速的预测作用 ——基于混频数据抽样模型的实证分析
电影票房收入
宏观经济走势
季度GDP增速
月度制造业PMI增速
GDP预测
口红效应
自回归分布混频数据抽样模型
高频变量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的多分类Logistic回归 ——明星影响力对电影票房评分的影响分析
来源期刊 现代信息科技 学科 工学
关键词 多分类Logistic回归 影响因素筛选 明星影响力
年,卷(期) 2019,(21) 所属期刊栏目 信息技术
研究方向 页码范围 22-24,27
页数 4页 分类号 TP181
字数 2675字 语种 中文
DOI 10.3969/j.issn.2096-4706.2019.21.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏启政 上海对外经贸大学统计与信息学院 2 0 0.0 0.0
2 黄恋舒 上海对外经贸大学统计与信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (41)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(4)
  • 参考文献(1)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多分类Logistic回归
影响因素筛选
明星影响力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导