基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文采用网络爬虫技术,根据关键字自动收集所用图片数据集,并对爬取到的图片进行除杂与标注,省去了人工收集的过程,提高了制作数据集的效率.搭建并训练了一个9层的卷积神经网络模型用于处理爬取图片的自动分类,经实验证明,训练后的模型对6类球和5类犬的识别准确率可达90%以上,可以用于网络爬取图片的自动分类.
推荐文章
基于卷积神经网络的垃圾自动分类算法
卷积神经网络
MobileNetV2
ShuffleNetV1
垃圾分类
基于多通道卷积神经网的实体关系抽取
关系抽取
卷积神经网
深度学习
多通道
基于卷积神经网络的古玩图片分类方法
深度学习
卷积神经网络
古玩图片
图像识别
基于卷积神经网络的图片风格转换系统
Python
卷积式神经网络(CNN)
深度学习
图片风格迁移
VGGNet
Neural Style
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网的网上爬取图片的自动分类
来源期刊 现代信息科技 学科 工学
关键词 网络爬虫 图像分类 神经网络 深度学习
年,卷(期) 2019,(15) 所属期刊栏目 计算机技术
研究方向 页码范围 91-93,96
页数 4页 分类号 TP391.4
字数 3790字 语种 中文
DOI 10.3969/j.issn.2096-4706.2019.15.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈磊 五邑大学智能制造学部 4 8 1.0 2.0
2 李鹤喜 五邑大学智能制造学部 14 35 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (277)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络爬虫
图像分类
神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导