基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于生成对抗网络的图像修复算法在处理图像信息大面积丢失的情况时,效果比传统算法有了较大提升,但是在许多细节方面仍有待改进,例如使修复区域与保留区域在语义上更加合理,被修复区域的边缘需要保持连贯性,修复区域需要有丰富的纹理细节.针对以上问题,在现有的生成对抗网络修复算法的基础上提出了改进,结合非局部注意力机制,对输入图像进行多级合并和设置缓冲层,添加辅助判别器.通过对比实验结果,验证了改进模型的有效性,得到的修复图像更符合人眼视觉系统的要求.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的图像修复技术研究
来源期刊 计算机应用与软件 学科 工学
关键词 深度学习 生成对抗网络 图像修复
年,卷(期) 2019,(12) 所属期刊栏目 图像处理与应用
研究方向 页码范围 220-224,250
页数 6页 分类号 TP3
字数 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.12.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄文培 西南交通大学信息科学与技术学院 34 277 11.0 15.0
2 李炬 西南交通大学信息科学与技术学院 5 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (3)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (12)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
生成对抗网络
图像修复
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导