基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的主题爬虫在计算主题相似度时,通常采用基于词频、向量空间模型以及语义相似度的方法,给相似度计算准确率的提升带来一定瓶颈.因此,提出融合LDA的卷积神经网络主题爬虫,将主题判断模块视为文本分类问题,利用深度神经网络提升主题爬虫的性能.在卷积层之后拼接LDA提取的主题特征,弥补传统卷积神经网络的主题信息缺失.实验结果表明,该方法可以有效提升主题判断模块的平均准确率,在真实爬取环境中相比其他方法更具优势.
推荐文章
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
主题网络爬虫研究综述
主题网络爬虫
信息检索
Web挖掘
融合空洞卷积神经网络的语义SLAM研究
语义SLAM
空洞卷积神经网络
语义标签
动态点剔除
地图构建
结果分析
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合LDA的卷积神经网络主题爬虫研究
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 主题爬虫 深度学习 LDA主题模型
年,卷(期) 2019,(11) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 123-128,178
页数 7页 分类号 TP391
字数 5710字 语种 中文
DOI 10.3778/j.issn.1002-8331.1810-0127
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘柏嵩 宁波大学信息科学与工程学院 48 518 13.0 21.0
5 费晨杰 宁波大学信息科学与工程学院 3 12 2.0 3.0
6 汪岿 宁波大学信息科学与工程学院 2 14 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (31)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (19)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
主题爬虫
深度学习
LDA主题模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导