作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着我国移动互联网技术的快速发展,微信,QQ,微博,手机应用等手机媒体的新起,以及智能手机,平板电脑和数码相机等移动设备的大量使用,与3G,4G,wifi等高速无线网络的不断普及,让更多的用户能够更快更方便的上传和浏览各种图像.但是,生活中还是有很多没有标记的图像,这些没有标记的图像很难进行搜索和处理,用户不能够更快的找到自己想要的图像,所以传统的图像分类识别方法并不能够满足现在的用户,还会给现在的用户在进行图像分类识别的时候造成一定的不便,浪费不必要的时间,尤其是在复杂环境下对自然图像的分类与识别.
推荐文章
基于卷积神经网络图像识别的智能电子秤系统
卷积神经网络
图像识别
机器视觉
智能电子秤系统
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
深度学习
卷积神经网络(CNN)
自适应
图像识别
层次化迭代
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于卷积神经网络的植物图像识别APP开发——"植鉴"
深度学习
TensorFlow框架
Inception-v3网络模型
'植鉴'APP
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习卷积神经网络图像识别技术的研究分析探讨
来源期刊 信息通信 学科 工学
关键词 卷积神经网络 图像识别技术 深度学习 分析探讨
年,卷(期) 2019,(7) 所属期刊栏目 学术研究
研究方向 页码范围 7-8
页数 2页 分类号 TP183
字数 3964字 语种 中文
DOI 10.3969/j.issn.1673-1131.2019.07.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏越 6 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (4)
参考文献  (3)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
图像识别技术
深度学习
分析探讨
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息通信
月刊
1673-1131
42-1739/TN
大16开
湖北省武汉市
1987
chi
出版文献量(篇)
18968
总下载数(次)
92
总被引数(次)
34323
论文1v1指导