基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对智能交通车辆图像特征识别问题,本文对深度网络和车辆图像特征提取方法进行研究,构建一种车辆特征检测网络结构。实验表明通过对车辆图像变换拉伸等数据增强操作,并在结构中引入随机清零,在保证识别率的前提下有效抑制了模型过拟合现象。最后运用特征提取结合自己设计的分类层训练出模型,该模型对车辆前后端图像特征有较高的识别率。
推荐文章
基于深度学习的肺部肿瘤图像识别方法
样本扩充
迁移学习
深度学习
归一预处理
医学图像识别
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于深度学习的图像识别技术研究综述
图像识别
CNN
R-CNN
SPP-Net
FastR-CNN
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
深度学习
卷积神经网络(CNN)
自适应
图像识别
层次化迭代
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度网络的车辆前后端图像识别方法研究
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 深度学习 数据增强 图像识别 过拟合
年,卷(期) 2019,(5Z) 所属期刊栏目
研究方向 页码范围 147-150
页数 4页 分类号 TP31
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王怡素 5 9 2.0 3.0
2 菅博瑞 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
数据增强
图像识别
过拟合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2019年第9Z期 电脑知识与技术:学术版2019年第9X期 电脑知识与技术:学术版2019年第9期 电脑知识与技术:学术版2019年第8Z期 电脑知识与技术:学术版2019年第8X期 电脑知识与技术:学术版2019年第8期 电脑知识与技术:学术版2019年第7Z期 电脑知识与技术:学术版2019年第7X期 电脑知识与技术:学术版2019年第7期 电脑知识与技术:学术版2019年第6Z期 电脑知识与技术:学术版2019年第6X期 电脑知识与技术:学术版2019年第6期 电脑知识与技术:学术版2019年第5Z期 电脑知识与技术:学术版2019年第5X期 电脑知识与技术:学术版2019年第5期 电脑知识与技术:学术版2019年第4Z期 电脑知识与技术:学术版2019年第4X期 电脑知识与技术:学术版2019年第4期 电脑知识与技术:学术版2019年第3Z期 电脑知识与技术:学术版2019年第3X期 电脑知识与技术:学术版2019年第3期 电脑知识与技术:学术版2019年第2Z期 电脑知识与技术:学术版2019年第2X期 电脑知识与技术:学术版2019年第2期 电脑知识与技术:学术版2019年第1Z期 电脑知识与技术:学术版2019年第1X期 电脑知识与技术:学术版2019年第12Z期 电脑知识与技术:学术版2019年第12X期 电脑知识与技术:学术版2019年第12期 电脑知识与技术:学术版2019年第11Z期 电脑知识与技术:学术版2019年第11X期 电脑知识与技术:学术版2019年第11期 电脑知识与技术:学术版2019年第10Z期 电脑知识与技术:学术版2019年第10X期 电脑知识与技术:学术版2019年第10期 电脑知识与技术:学术版2019年第1期
论文1v1指导