基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对贝叶斯学习方法(SBL)重构二维图像信号精度不高的问题,采用对图像信号分块重建的方式,将贝叶斯学习算法推广为块贝叶斯学习(BSBL)算法,用于二维图像信号的重构中,给出了重构算法的相应公式并进行了算法仿真.仿真结果表明,在相同的条件下,BSBL能够获得较好的图像重构效果和最小的二维重构误差.
推荐文章
基于贝叶斯匹配追踪的SAR图像重构
压缩感知
SAR图像
高斯混合参数
贝叶斯
EM
基于稀疏贝叶斯估计的单图像超分辨率算法
单图像超分辨率
超分辨率
贝叶斯估计
回归
稀疏表示
基于改进块稀疏贝叶斯学习算法的波达方向估计
空时联合
块稀疏
稀疏贝叶斯学习
DOA估计
合成孔径雷达图像的贝叶斯压缩感知重构算法
合成孔径雷达
方向提升小波变换
稀疏表示
贝叶斯推理
压缩感知
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于块稀疏贝叶斯算法的图像重构方法与仿真
来源期刊 信息与电脑 学科 工学
关键词 信号重构 贝叶斯学习方法 BSBL 重构误差
年,卷(期) 2019,(21) 所属期刊栏目 算法语言
研究方向 页码范围 33-35
页数 3页 分类号 TN951|TN959.1
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高瑜翔 20 17 3.0 3.0
2 夏朝禹 7 1 1.0 1.0
3 田湘 1 0 0.0 0.0
4 曹远杰 1 0 0.0 0.0
5 张皓 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
信号重构
贝叶斯学习方法
BSBL
重构误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导