基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习应用在日志异常检测领域中,取得了较好的准确率。日志异常检测对实时性的要求很高,这对异常检测模型的运行速度提出了巨大挑战,目前基于循环神经网络的检测算因其固有的循环结构导致并行计算难以实现,这极大限制了模型的计算速度。为提高日志异常检测效率,设计了基于切片GRU日志异常检测模型,提出了一种基于最小质因数切片的日志异常检测算法。构建的切片GRU模型主要对隐藏层做了改进,输入序列在进入隐藏层之前进行了切片,每一层的GRU块按照切片数量进行分组,组与组之间并行计算,层与层之间串行计算,多个隐藏层共同处理输入序列,切片GRU模型的这种层次结构加快了模型的运行速度,在不影响检测精度的前提下,算法在不同长度的日志序列上均有不效率提升,且输入序列越长,提升的幅度越大。
推荐文章
基于深度学习的系统日志异常检测研究
日志异常检测
深度学习
GRU神经网络
日志异常检测技术研究
日志
异常检测
日志模板
序列建模
基于海量日志的入侵检测并行化算法研究
Hadoop
日志信息分析
入侵检测
并行化算法
基于改进GRU的电力大数据分析
异常值
自适应阈值的小波滤波
数据段
标准记忆
改进GRU
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于切片GRU的日志异常检测研究
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 日志异常检测 深度学习 循环神经网络 GRU网络 切片算法
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 59-60
页数 2页 分类号 TP319
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王易东 中国海洋大学信息科学与工程学院 3 0 0.0 0.0
2 王彬 中国海洋大学继续教育学院 21 82 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
日志异常检测
深度学习
循环神经网络
GRU网络
切片算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2019年第9Z期 电脑知识与技术:学术版2019年第9X期 电脑知识与技术:学术版2019年第9期 电脑知识与技术:学术版2019年第8Z期 电脑知识与技术:学术版2019年第8X期 电脑知识与技术:学术版2019年第8期 电脑知识与技术:学术版2019年第7Z期 电脑知识与技术:学术版2019年第7X期 电脑知识与技术:学术版2019年第7期 电脑知识与技术:学术版2019年第6Z期 电脑知识与技术:学术版2019年第6X期 电脑知识与技术:学术版2019年第6期 电脑知识与技术:学术版2019年第5Z期 电脑知识与技术:学术版2019年第5X期 电脑知识与技术:学术版2019年第5期 电脑知识与技术:学术版2019年第4Z期 电脑知识与技术:学术版2019年第4X期 电脑知识与技术:学术版2019年第4期 电脑知识与技术:学术版2019年第3Z期 电脑知识与技术:学术版2019年第3X期 电脑知识与技术:学术版2019年第3期 电脑知识与技术:学术版2019年第2Z期 电脑知识与技术:学术版2019年第2X期 电脑知识与技术:学术版2019年第2期 电脑知识与技术:学术版2019年第1Z期 电脑知识与技术:学术版2019年第1X期 电脑知识与技术:学术版2019年第12Z期 电脑知识与技术:学术版2019年第12X期 电脑知识与技术:学术版2019年第12期 电脑知识与技术:学术版2019年第11Z期 电脑知识与技术:学术版2019年第11X期 电脑知识与技术:学术版2019年第11期 电脑知识与技术:学术版2019年第10Z期 电脑知识与技术:学术版2019年第10X期 电脑知识与技术:学术版2019年第10期 电脑知识与技术:学术版2019年第1期
论文1v1指导