作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
笔者在基于神经网络的命名实体识别基础上,提出了改进的中文命名实体识别方法,通过调整网络中间的部分架构,引入Transformer编码模型,在没有添加文本外部信息的情况下,研究学习文本语句自身含义的方法,通过多注意力的学习增强文本的特征表示,捕捉更多字符间的关系,同时解决了长短期记忆网络不能并行计算的问题,并在企业舆情数据集上进行了实验和测试.与传统方法进行对比,验证了该方法可有效提高中文命名实体识别的准确率.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于中文维基百科的命名实体消歧方法
命名实体消歧
词义消歧
中文维基百科
中文信息处理
基于自注意力机制的军事命名实体识别
LSTM
命名实体识别
深度学习
自注意力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多注意力的中文命名实体识别
来源期刊 信息与电脑 学科 工学
关键词 神经网络 命名实体识别 注意力
年,卷(期) 2019,(9) 所属期刊栏目 算法语言
研究方向 页码范围 41-44,48
页数 5页 分类号 TP391.1
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
命名实体识别
注意力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导