基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前视觉监控领域中采集到的人物数据样本量少和特征单一的问题,提出了一种具有高视觉感知约束的双向生成对抗网络生成期望人物姿态图像的方法.采用给定人物的单个图像和期望姿态的二维骨架作为双向生成对抗网络的输入,生成具有该目标人物期望姿态的图像.将生成的期望姿态图像反映射回原始姿态图像,利用少量的图像以无监督学习方式进行学习,生成该人物期望姿态的高质量图像.提出的方法在DeepFashion公开数据集上进行了实验,结果表明,采用文中提出的方法生成的图像结构相似度(SSIM)比以往的方法提高了0.28,有效的提升了基于无监督学习的单人多姿态人物图像生成的质量.
推荐文章
基于无监督学习的行人检测算法
行人检测
无监督
稀疏编码
非线性变换
非极大值抑制
基于半监督学习的一种图像检索方法
基于内容的图像检索
半监督学习
图像特征
相关度
查准率—查全率曲线
采用无监督学习算法与卷积的图像分类模型
K-means聚类
图像分类
卷积
卷积神经网络
Dropout
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于无监督学习的单人多姿态图像生成方法
来源期刊 光电技术应用 学科 工学
关键词 半监督学习 视觉监控 生成对抗网络 结构相似度
年,卷(期) 2020,(2) 所属期刊栏目 信号与信息处理
研究方向 页码范围 60-64
页数 5页 分类号 TP311.13
字数 4058字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈亮 62 181 7.0 10.0
2 孙金根 20 50 4.0 6.0
3 刘韵婷 17 12 2.0 2.0
4 张婧 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
半监督学习
视觉监控
生成对抗网络
结构相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光电技术应用
双月刊
1673-1255
12-1444/TN
大16开
天津市空港经济区纬五道9号
1982
chi
出版文献量(篇)
2224
总下载数(次)
8
总被引数(次)
9885
论文1v1指导