基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据高速公路交通数据的特点,采用基于最大偏差相似性准则(MDSC)与KNN填充算法对缺失交通数据进行填充.针对KNN填充算法可能产生伪邻近点问题,提出利用MDSC对不完整的交通数据中缺失的属性样本和完整值数据样本进行聚类,以避免伪邻近点发生;并利用基于骨干粒子群算法对MDSC参数优化.实验结果表明:基于优化MDSC的KNN填充算法的RMSE值更小,效果更优.
推荐文章
基于最大偏差相似性准则的交通流聚类算法
交通流曲线
聚类算法
曲线形态
相似性
基于最大偏差相似性准则的BP神经网络短期电力负荷预测算法
需求响应
电力负荷预测
BP神经网络
最大偏差相似性准则
聚类算法
基于最大偏差相似性准则的交通流聚类算法
交通流曲线
聚类算法
曲线形态
相似性
基于最大偏差相似性准则的BP神经网络短期电力负荷预测算法
需求响应
电力负荷预测
BP神经网络
最大偏差相似性准则
聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化最大偏差相似性准则的KNN缺失数据填充算法
来源期刊 自动化与信息工程 学科 工学
关键词 智能交通 高速公路 缺失数据填充 聚类算法
年,卷(期) 2020,(2) 所属期刊栏目 特约论文
研究方向 页码范围 8-15,26
页数 9页 分类号 TP18
字数 4874字 语种 中文
DOI 10.3969/j.issn.1674-2605.2020.02.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡延光 广东工业大学自动化学院 181 812 14.0 20.0
2 阮嘉琨 广东工业大学自动化学院 5 9 2.0 3.0
3 王建成 广东工业大学自动化学院 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (21)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(14)
  • 参考文献(2)
  • 二级参考文献(12)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能交通
高速公路
缺失数据填充
聚类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化与信息工程
双月刊
1674-2605
44-1632/TP
大16开
广州市先烈中路100号大院13号楼601《自动化与信息工程》编辑部
1980
chi
出版文献量(篇)
1389
总下载数(次)
2
总被引数(次)
4396
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导