It has been extensively shown in past literature that Bayesian game theory and quantum non-locality have strong ties between them. Pure entangled states have been used, in both common and conflict interest games, to gain advantageous payoffs, both at the individual and social level. In this paper, we construct a game for a mixed entangled state such that this state gives higher payoffs than classically possible, both at the individual level and the social level. Also, we use the I-3322 inequality so that states that aren’t useful advice for the Bell-CHSH<sup>1</sup> inequality can also be used. Finally, the measurement setting we use is a restricted social welfare strategy (given this particular state).