基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文针对变频压缩机的功率测量困难,测量误差大等问题,提出了一种仿真测量模型.利用粒子群算法寻找全局最优粒子,用它初始化BP神经网络的阈值和权值,测量变频压缩机的功率.本文共建立了3种仿真模进行对比,分别为BP神经网络模型、GA-BP神经网络模型和PSO-BP神经网络模型,然后分别通过3种模型的内插、蒸发温度外推和冷凝温度外推的测试方法对变频压缩机进行功率测量,对比分析其预测结果的平均相对误差和拟合程度.结果表明:基于粒子群算法优化的BP神经网络模型明显优于其他两个模型,特别是在冷凝温度外推测试中,较其他两个神经网络相对误差降低了1.11%、2.64%,3种测试方法下的平均相对误差均小于1%,拟合程度在0.9以上,表明基于粒子群算法优化的BP神经网络模型对变频压缩机功率有较好的测量能力,而且有较强的泛化能力.
推荐文章
基于粒子群算法优化BP神经网络的产品质量预测分析
BP神经网络
改进
粒子群算法
产品质量预测
克隆选择粒子群优化BP神经网络电力需求预测
BP神经网络
克隆选择算法
粒子群优化
电力需求
基于粒子群优化BP神经网络的高校科研管理评估研究
高校科研管理
绩效评估
粒子群算法
BP神经网络
模型预测
预测精度
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法和BP神经网络的变频压缩机功率预测
来源期刊 制冷学报 学科 工学
关键词 变频压缩机 压缩机功率测量 粒子群算法 BP神经网络
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 89-95
页数 7页 分类号 TB61+1|TQ051.5
字数 3442字 语种 中文
DOI 10.3969/j.issn.0253-4339.2020.01.089
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈焕新 华中科技大学能源与动力工程学院 150 1067 18.0 25.0
2 程亚豪 华中科技大学能源与动力工程学院 4 3 1.0 1.0
3 郭亚宾 华中科技大学能源与动力工程学院 16 60 4.0 7.0
4 龚麒鉴 华中科技大学能源与动力工程学院 2 4 1.0 2.0
5 许珅鸣 华中科技大学能源与动力工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (46)
参考文献  (17)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(2)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变频压缩机
压缩机功率测量
粒子群算法
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
制冷学报
双月刊
0253-4339
11-2182/TB
大16开
北京海淀区阜成路67号银都大厦10层
892101
1979
chi
出版文献量(篇)
1936
总下载数(次)
0
总被引数(次)
21605
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导