基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
语音增强的目的是从带有噪声的语音中分离出纯净语音,实现语音的质量和可懂度的提高.近年来,采用有监督学习的深度神经网络已经成为了语音增强的主流方法.卷积循环网络是一种新型的神经网络结构,包含编码层、中间层、解码层三个主要模块,其已经在语音增强任务中取得了较好的效果.时频注意力机制是一个由数个相连的卷积层通过跳跃连接构成的简单网络模块,在训练过程中可以计算语音幅度谱特征图的非邻域相关性,从而更加有利于网络关注到语音的谐波特性.本文将时频注意力机制引入卷积循环网络的编码层和解码层中,实验结果表明,在不同信噪比条件下,该方法相比基线卷积循环网络能够进一步提高语音质量和可懂度,且增强后的语音信号可以保留更多的语谱谐波信息,实现更低程度的语音失真.
推荐文章
基于混合式注意力机制的语音识别研究
卷积
注意力机制
全局平均池化
长短期记忆网络
LAS模型
一种基于注意力机制的语音情感识别算法研究
语音情感识别
深度学习
注意力机制
语谱图
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合深度卷积循环网络和时频注意力机制的单通道语音增强算法
来源期刊 信号处理 学科 工学
关键词 语音增强 深度神经网络 深度学习 监督学习 注意力机制
年,卷(期) 2020,(6) 所属期刊栏目 论文
研究方向 页码范围 863-870
页数 8页 分类号 TN912
字数 6334字 语种 中文
DOI 10.16798/j.issn.1003-0530.2020.06.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晶 北京理工大学信息与电子学院 39 127 6.0 8.0
2 闫昭宇 北京理工大学信息与电子学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (1)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语音增强
深度神经网络
深度学习
监督学习
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导