作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在输电线路三维可视化自动建模场景中如何实现对杆塔的三维点云数据进行快速准确的自动化分类是一个关键问题,在本文中我们提出了一种基于卷积自编码神经网络CAE的杆塔三维点云数据自动分类算法.首先,我们通过投影计算得到杆塔点云的旋转角度并使用旋转矩阵将杆塔点云摆正,然后进行正面侧面投影获取到杆塔点云的图像;第二,使用收集到的杆塔点云图像组成训练数据集,对卷积自编码网络进行训练之后提取出自编码网络的编码部分用于对图像进行特征提取;第三,使用自编码器对输入的杆塔点云图进行特征抽取,将提取的图像特征向量输入EM进行自动分类.实验结果表明我们所提出的杆塔点云自动分类算法能够快速准确实现对点云数据的自动化分类.
推荐文章
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
基于自编码的高光谱图像波段加权分类网络研究
高光谱图像分类
波段加权
注意机制
卷积神经网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积自编码网络的杆塔点云数据自动分类方法
来源期刊 云南电力技术 学科
关键词 深度学习 卷积神经网络 自编码网络 无监督聚类 EM聚类
年,卷(期) 2020,(1) 所属期刊栏目 "人工智能技术电力研究与应用"专栏
研究方向 页码范围 8-11
页数 4页 分类号
字数 2121字 语种 中文
DOI 10.3969/j.issn.1006-7345.2020.01.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵李强 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (49)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
自编码网络
无监督聚类
EM聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南电力技术
双月刊
1006-7345
53-1117/TM
大16开
昆明市经济技术开发区云大西路中段105号电力科技园电力研究院206室
1973
chi
出版文献量(篇)
4381
总下载数(次)
5
总被引数(次)
8632
论文1v1指导