基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In recent years,hyper-complex deep networks(such as complex-valued and quaternion-valued neural networks–QVNNs)have received a renewed interest in the literature.They find applications in multiple fields,ranging from image reconstruction to 3D audio processing.Similar to their real-valued counterparts,quaternion neural networks require custom regularisation strategies to avoid overfitting.In addition,for many real-world applications and embedded implementations,there is the need of designing sufficiently compact networks,with few weights and neurons.However,the problem of regularising and/or sparsifying QVNNs has not been properly addressed in the literature as of now.In this study,the authors show how to address both problems by designing targeted regularisation strategies,which can minimise the number of connections and neurons of the network during training.To this end,they investigate two extensions of ℓ1 and structured regularisations to the quaternion domain.In the authors’experimental evaluation,they show that these tailored strategies significantly outperform classical(realvalued)regularisation approaches,resulting in small networks especially suitable for low-power and real-time applications.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Deep web接口查询能力估计
查询接口
查询能力
Deep Web数据源自动分类
Deep Web
查询接口
朴素贝叶斯分类
一种Deep Web聚焦爬虫爬行策略
结构化Deep Web数据源
聚焦爬虫
决策树分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Compressing deep-quaternion neural networks with targeted regularisation
来源期刊 智能技术学报 学科 工学
关键词 NETWORKS NEURAL VALUED
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 172-176
页数 5页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NETWORKS
NEURAL
VALUED
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导