基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机械设备故障诊断在工业应用中具有重要的意义.传统的基于振动信号处理与分析的故障诊断方法,依赖于丰富的专业知识和人工经验,难以保证准确的特征提取与故障诊断.利用深度学习方法可以自动学习数据深层次特征的特点,提出一种基于改进卷积深度置信网络的滚动轴承故障定性、定量诊断方法.首先,为了提供较好的浅层输入,将原始振动信号转换至频域信号;其次,在模型训练过程中,引入Adam优化器,加快模型训练,提高模型收敛速度;最后,为了充分发挥模型各层特征表征能力,对模型结构进行优化,提出多层特征融合学习结构,以提高模型的泛化能力.实验结果表明,所提出的改进模型相比于传统的栈式自动编码器、人工神经网络、深度置信网络以及标准卷积深度信念网络,具有更好的诊断精度,有效地实现了轴承故障的定性、定量化诊断.
推荐文章
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
基于改进深度置信网络的故障诊断方法
故障诊断
深度置信网络
特征提取
自适应谐振
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
采用多通道样本和深度卷积神经网络的轴承故障诊断方法
轴承故障诊断
三通道样本
深度卷积神经网络
连续小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进卷积深度置信网络的轴承故障诊断研究
来源期刊 电子测量与仪器学报 学科 工学
关键词 故障诊断 轴承 特征学习 卷积深度置信网络
年,卷(期) 2020,(2) 所属期刊栏目 信息处理技术
研究方向 页码范围 36-43
页数 8页 分类号 TH165+.3|TN06
字数 语种 中文
DOI 10.13382/j.jemi.B1902826
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (2)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(7)
  • 参考文献(7)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
轴承
特征学习
卷积深度置信网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导