基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决从单目图像中很难恢复出准确、有效深度信息的问题,提出一种多尺度特征融合的单目图像深度估计算法.算法采用端对端训练的卷积神经网络(CNN)结构,引入从图像编码器到解码器的跳层连接来实现在不同尺度上特征的提取和表达,设计了一种多尺度的损失函数来提升卷积神经网络的训练效果.通过在NYU Depth V2室内场景深度数据集和KITTI室外场景深度数据集上的训练、验证和测试,实验结果表明:提出的多尺度特征融合方法得到的深度图边缘清晰、层次分明,且在室内场景和室外场景中均能适用,具有较强的泛化性,可以适应多种实际场景的需求.
推荐文章
基于LLOM的单目图像深度图估计算法*
深度估计
单目图像
语义标注
流形学习
基于多尺度特征融合模型的遥感图像建筑物分割
遥感图像
建筑物分割
深度神经网络
膨胀卷积
多尺度特征融合
基于多尺度快速清晰度估计的多聚焦图像超分辨融合技术研究
多尺度
清晰度估计
多聚焦图像融合
超分辨率融合
采用单目图像特征直线的飞机姿态估计
直线特征
正交迭代算法
姿态
单目
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度特征融合的单目图像深度估计
来源期刊 华中科技大学学报(自然科学版) 学科 工学
关键词 计算机视觉 深度学习 卷积神经网络 单目图像深度估计 多尺度特征融合
年,卷(期) 2020,(5) 所属期刊栏目 电子与信息工程
研究方向 页码范围 7-12
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.13245/j.hust.200502
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张松涛 武汉大学电子信息学院 3 50 1.0 3.0
2 王泉德 武汉大学电子信息学院 21 239 8.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (6)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机视觉
深度学习
卷积神经网络
单目图像深度估计
多尺度特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
总被引数(次)
88536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导