基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近几年来,深度学习在机器学习研究领域中取得了巨大的突破,深度学习能够很好地实现复杂问题的学习,然而,深度学习最大的弊端之一,就是需要大量人工标注的训练数据,而这需要耗费大量的人力成本.因此,为了缓解深度学习存在的这一问题,Palatucci等于2009年提出了零样本学习(Zero-shot learning).零样本学习是迁移学习的一种特殊场景,在零样本学习过程中,训练类集和测试类集之间没有交集,需要通过训练类与测试类之间的知识迁移来完成学习,使在训练类上训练得到的模型能够成功识别测试类输入样例的类标签.零样本学习的意义不仅在于可以对难以标注的样例进行识别,更在于这一方法模拟了人类对于从未见过的对象的认知过程,零样本学习方法的研究,也会在一定程度上促进认知科学的研究.鉴于零样本学习的应用价值、理论意义和未来的发展潜力,文中系统综述了零样本学习的研究进展,首先概述了零样本学习的定义,介绍了4种典型的零样本学习模型,并对零样本学习存在的关键问题及解决方法进行了介绍,对零样本学习的多种模型进行了分类和阐述,并在最后指明了零样本学习进一步研究中需要解决的问题以及未来可能的发展方向.
推荐文章
基于属性平衡正则化的深度零样本学习
零样本学习
深度学习
属性平衡
端到端训练
直推式遥感图像场景零样本分类算法
遥感场景分类
直推式零样本分类
Sammon嵌入
谱聚类
基于稀疏编码空间金字塔模型的零样本学习
视觉特征
零样本问题
稀疏编码
空间金字塔模型
属性分类器
基于公共空间嵌入的端到端深度零样本学习
零样本学习
嵌入模型
属性学习
深度神经网络
公共空间
词向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 零样本学习研究进展
来源期刊 自动化学报 学科
关键词 零样本学习 描述 属性 训练类 测试类 嵌入空间
年,卷(期) 2020,(1) 所属期刊栏目 综述
研究方向 页码范围 1-23
页数 23页 分类号
字数 27336字 语种 中文
DOI 10.16383/j.aas.c180429
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
零样本学习
描述
属性
训练类
测试类
嵌入空间
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导