基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高推荐结果的精度和个性化程度,文章有效利用多种信息源,将贝叶斯方法和深度学习结合,提出一种基于贝叶斯自编码器的社会化推荐算法.算法首先利用混合隶属度随机块模型MMSB (Mixed membership stochastic block)对用户间交互关系建模,结合用户的属性特征,利用自编码器学习用户的隐含特征向量;然后利用主题模型结合自编码模块学习物品特征向量;最后利用概率框架将物品和用户间的各种属性统一起来,共同学习矩阵分解模型中的关系矩阵.模型中的参数利用变分EM算法进行推理.实验结果表明与同类算法比较,算法在精确度和覆盖率上有不同程度的提升,且能够得到比较个性化的推荐结果.
推荐文章
基于降噪自编码器的社会化推荐算法
推荐系统
社交网络
降噪自编码器
深度学习
混合推荐
基于多重降噪自编码器模型的top-N推荐算法
预测精度
用户评分
加噪操作
多重降噪自编码器
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
基于隐朴素贝叶斯模型的社会关系推荐
社会网络
关系推荐
链接预测
关系预测
隐朴素贝叶斯
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯和自编码器的社会化推荐算法研究
来源期刊 系统科学与数学 学科
关键词 混合隶属度随机块 自编码器 矩阵分解 贝叶斯
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 686-700
页数 15页 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王大刚 合肥师范学院计算机学院 5 12 2.0 3.0
3 钟锦 合肥师范学院计算机学院 19 16 3.0 3.0
5 吴昊 合肥师范学院计算机学院 12 51 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (50)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
混合隶属度随机块
自编码器
矩阵分解
贝叶斯
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统科学与数学
月刊
1000-0577
11-2019/O1
16开
北京市中关村东路55号中科院数学与系统科学研究院
2-563
1981
chi
出版文献量(篇)
2941
总下载数(次)
4
论文1v1指导