基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Feature selection is essential for prioritising important attributes in data to improve prediction quality in machine learning algorithms.As different selection techniques identify different feature sets,relying on a single method may result in risky decisions.The authors propose an ensemble approach using union and quorum combination techniques with five primary individual selection methods which are analysis of variance,variance threshold,sequential backward search,recursive feature elimination,and least absolute selection and shrinkage operator.The proposed method reduces features in three rounds:(i)discard redundant features using pairwise correlation,(ii)individual methods select their own feature sets independently,and(iii)equalise individual feature sets.The equalised individual feature sets are combined using union and quorum techniques.Both the combined and individual sets are tested for network anomaly detection using random forest,decision tree,K-nearest neighbours,Gaussian Naive Bayes,and logistic regression classifiers.The experimental results on the UNSW-NB15 data set show that random forest with union and quorum feature sets yields 99 and 99.02% f1_score with minimum 6 and 12 features,respectively.The results on the NSL-KDD data set show that random forest with union and quorum gets 99.34 and 99.21% f1_score with a minimum of 28 and 18 features.
推荐文章
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Feature selection approach using ensemble learning for network anomaly detection
来源期刊 智能技术学报 学科 工学
关键词 UNION ENSEMBLE NETWORK
年,卷(期) znjsxb_2020,(4) 所属期刊栏目
研究方向 页码范围 283-293
页数 11页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
UNION
ENSEMBLE
NETWORK
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
论文1v1指导