钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
基础科学期刊
\
大学学报期刊
\
电子科技大学学报期刊
\
基于强化学习的模型选择和超参数优化
基于强化学习的模型选择和超参数优化
作者:
吴佳
周瑞
陈修云
陈森朋
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
深度强化学习
超参数优化
LSTM网络
机器学习
模型选择
摘要:
随着机器学习技术的不断发展,机器学习算法种类的增多以及模型复杂度提高,造成了实践应用中的两大难题:算法模型选择及模型超参数优化.为了实现模型选择和超参数优化的自动处理,该文提出了一种基于深度强化学习的优化方法.利用长短期记忆(LSTM)网络构建一个智能体(Agent),自动选择机器学习算法模型及对应的超参数组合.该智能体以最大化机器学习模型在验证数据集上的准确率为目标,利用所选择的模型在验证数据集上的准确率作为奖赏值(reward),通过强化学习算法不断学习直到找到最优的模型以及超参数组合.为了验证该方法的可行性及性能,在UCI标准数据集上将其与传统优化方法中基于树状结构Parzen的估计方法和随机搜索方法进行比较.多次实验结果证明该优化方法在稳定性、时间效率、准确度方面均具有优势.
暂无资源
收藏
引用
分享
推荐文章
基于强化学习的参数化电路优化算法
优化算法
强化学习
参数化优化
基于强化学习的电动车路径优化研究
车辆路径问题
电动车
多约束
强化学习
策略梯度法
组合优化
基于改进强化学习的PID参数整定原理及应用
PID
参数整定
强化学习
控制系统
一种新的基于蚁群优化的模糊强化学习算法
强化学习
模糊Sarsa学习
蚁群优化
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于强化学习的模型选择和超参数优化
来源期刊
电子科技大学学报
学科
工学
关键词
深度强化学习
超参数优化
LSTM网络
机器学习
模型选择
年,卷(期)
2020,(2)
所属期刊栏目
计算机工程与应用
研究方向
页码范围
255-261
页数
7页
分类号
TP391
字数
5224字
语种
中文
DOI
10.12178/1001-0548.2018279
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
吴佳
电子科技大学信息与软件工程学院
12
92
4.0
9.0
2
周瑞
电子科技大学信息与软件工程学院
13
164
6.0
12.0
3
陈森朋
电子科技大学信息与软件工程学院
2
1
1.0
1.0
4
陈修云
电子科技大学信息与软件工程学院
2
1
1.0
1.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(7)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1992(1)
参考文献(1)
二级参考文献(0)
1997(1)
参考文献(1)
二级参考文献(0)
2014(1)
参考文献(1)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2016(1)
参考文献(1)
二级参考文献(0)
2017(2)
参考文献(2)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
深度强化学习
超参数优化
LSTM网络
机器学习
模型选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技大学学报
主办单位:
电子科技大学
出版周期:
双月刊
ISSN:
1001-0548
CN:
51-1207/T
开本:
大16开
出版地:
成都市成华区建设北路二段四号
邮发代号:
62-34
创刊时间:
1959
语种:
chi
出版文献量(篇)
4185
总下载数(次)
13
总被引数(次)
36111
相关基金
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
期刊文献
相关文献
1.
基于强化学习的参数化电路优化算法
2.
基于强化学习的电动车路径优化研究
3.
基于改进强化学习的PID参数整定原理及应用
4.
一种新的基于蚁群优化的模糊强化学习算法
5.
基于蚂蚁优化算法的分层强化学习
6.
基于FCBF特征选择和集成优化学习的基因表达数据分类算法
7.
基于CARLA-PSO组合模型的智能控制器参数学习优化
8.
基于强化学习和分块并行的演化硬件方法
9.
基于不同损失函数的模型选择和正则化学习方法
10.
基于核方法的强化学习算法
11.
基于强化学习的HP模型优化方法研究
12.
基于强化学习的移动边缘计算任务卸载方法
13.
一种基于动态参数调整的强化学习动作选择机制
14.
单跑道进离场航班强化学习排序模型研究
15.
强化学习研究综述
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
力学
化学
地球物理学
地质学
基础科学综合
大学学报
天文学
天文学、地球科学
数学
气象学
海洋学
物理学
生物学
生物科学
自然地理学和测绘学
自然科学总论
自然科学理论与方法
资源科学
非线性科学与系统科学
电子科技大学学报2022
电子科技大学学报2021
电子科技大学学报2020
电子科技大学学报2019
电子科技大学学报2018
电子科技大学学报2017
电子科技大学学报2016
电子科技大学学报2015
电子科技大学学报2014
电子科技大学学报2013
电子科技大学学报2012
电子科技大学学报2011
电子科技大学学报2010
电子科技大学学报2009
电子科技大学学报2008
电子科技大学学报2007
电子科技大学学报2006
电子科技大学学报2005
电子科技大学学报2004
电子科技大学学报2003
电子科技大学学报2002
电子科技大学学报2001
电子科技大学学报2000
电子科技大学学报1999
电子科技大学学报2020年第6期
电子科技大学学报2020年第5期
电子科技大学学报2020年第4期
电子科技大学学报2020年第3期
电子科技大学学报2020年第2期
电子科技大学学报2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号