基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The biodiversity of the Himalaya, Hengduan Mountains and Tibet, here collectively termed the Tibetan Region, is exceptional in a global context. To contextualize and understand the origins of this biotic richness, and its conservation value, we examine recent fossil finds and review progress in under-standing the orogeny of the Tibetan Region. We examine the deep-time origins of monsoons affecting Asia, climate variation over different timescales, and the establishment of environmental niche hetero-geneity linked to topographic development. The origins of the modern biodiversity were established in the Eocene, concurrent with the formation of pronounced topographic relief across the Tibetan Region. High (>4 km) mountains to the north and south of what is now the Tibetan Plateau bounded a Paleogene central lowland (<2.5 km) hosting moist subtropical vegetation influenced by an intensifying monsoon. In mid Miocene times, before the Himalaya reached their current elevation, sediment infilling and compressional tectonics raised the floor of the central valley to above 3000 m, but central Tibet was still moist enough, and low enough, to host a warm temperate angiosperm-dominated woodland. After 15 Ma, global cooling, the further rise of central Tibet, and the rain shadow cast by the growing Himalaya, progressively led to more open, herb-rich vegetation as the modern high plateau formed with its cool, dry climate. In the moist monsoonal Hengduan Mountains, high and spatially extensive since the Eocene but subsequently deeply dissected by river incision, Neogene cooling depressed the tree line, compressed altitudinal zonation, and created strong environmental heterogeneity. This served as a cradle for the then newly-evolving alpine biota and favoured diversity within more thermophilic vegetation at lower ele-vations. This diversity has survived through a combination of minimal Quaternary glaciation, and complex relief-related environmental niche heterogeneity. The great antiquity and diversity of the Ti-betan Region biota argues for its conservation, and the importance of that biota is demonstrated through our insights into its long temporal gestation provided by fossil archives and information written in surviving genomes. These data sources are worthy of conservation in their own right, but for the living biotic inventory we need to ask what it is we want to conserve. Is it 1) individual taxa for their intrinsic properties, 2) their services in functioning ecosystems, or 3) their capacity to generate future new biodiversity? If 2 or 3 are our goal then landscape conservation at scale is required, and not just seed banks or botanical/zoological gardens.
推荐文章
Effects of topography and vegetation on distribution of rare earth elements in calcareous soils
REE distribution
Weathering and pedogenesis
Topography and vegetation
Calcareous soils
Geochronology and geochemistry of the five magmatic rocks in the Ningzhen region, China
Intermediate–acidic intrusive complexes
LA–ICP–MS zircon U–Pb dating
Geochemistry
Geodynamic setting
Ningzhen region
Variations of trace elements under hydrological conditions in the Min River, Eastern Tibetan Plateau
Trace elements
Concentration-discharge relationship
Tibetan Plateau
River
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region:An evolving story
来源期刊 植物多样性(英文) 学科
关键词
年,卷(期) 2020,(4) 所属期刊栏目 Articles
研究方向 页码范围 229-254
页数 26页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (293)
共引文献  (46)
参考文献  (143)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1931(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(3)
  • 参考文献(1)
  • 二级参考文献(2)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(2)
  • 参考文献(2)
  • 二级参考文献(0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(3)
  • 参考文献(0)
  • 二级参考文献(3)
1982(4)
  • 参考文献(2)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(7)
  • 参考文献(1)
  • 二级参考文献(6)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(5)
  • 参考文献(1)
  • 二级参考文献(4)
1989(3)
  • 参考文献(1)
  • 二级参考文献(2)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1993(7)
  • 参考文献(1)
  • 二级参考文献(6)
1994(6)
  • 参考文献(0)
  • 二级参考文献(6)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(5)
  • 参考文献(3)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(9)
  • 参考文献(2)
  • 二级参考文献(7)
2001(13)
  • 参考文献(5)
  • 二级参考文献(8)
2002(15)
  • 参考文献(1)
  • 二级参考文献(14)
2003(12)
  • 参考文献(3)
  • 二级参考文献(9)
2004(8)
  • 参考文献(2)
  • 二级参考文献(6)
2005(23)
  • 参考文献(4)
  • 二级参考文献(19)
2006(16)
  • 参考文献(3)
  • 二级参考文献(13)
2007(23)
  • 参考文献(6)
  • 二级参考文献(17)
2008(17)
  • 参考文献(3)
  • 二级参考文献(14)
2009(20)
  • 参考文献(4)
  • 二级参考文献(16)
2010(27)
  • 参考文献(4)
  • 二级参考文献(23)
2011(16)
  • 参考文献(4)
  • 二级参考文献(12)
2012(25)
  • 参考文献(8)
  • 二级参考文献(17)
2013(13)
  • 参考文献(3)
  • 二级参考文献(10)
2014(29)
  • 参考文献(12)
  • 二级参考文献(17)
2015(23)
  • 参考文献(7)
  • 二级参考文献(16)
2016(22)
  • 参考文献(11)
  • 二级参考文献(11)
2017(18)
  • 参考文献(14)
  • 二级参考文献(4)
2018(15)
  • 参考文献(13)
  • 二级参考文献(2)
2019(17)
  • 参考文献(17)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
植物多样性(英文)
双月刊
2096-2703
53-1233/Q
昆明市盘龙区蓝黑路132号中科院昆明植物研究所内
eng
出版文献量(篇)
2033
总下载数(次)
4
论文1v1指导