原文服务方: 选煤技术       
摘要:
针对人工方法检测筛板故障的滞后性,提出了一种基于深度视觉的筛板故障智能检测方法.该方法采用TOF相机获取筛板的深度图像,利用三维空间关系获得疑似故障区域工位与相机之间的距离,并结合该区域的深度图像数据,实现了对筛板故障的智能诊断.试验表明,该方法不仅可实现筛板故障的实时、智能检测,且检测准确率高,为选煤生产系统的正常运行提供了保障.
推荐文章
基于深度学习的变压器在线故障检测
深度学习
故障检测
密度图像
曲线拟合
基于机器视觉的新能源电池盖帽质量智能检测
电池盖帽
质量检测
机器视觉
深度学习
基于智能视觉的油画真伪鉴定技术研究
油画真伪鉴定
智能视觉
检测模型构建
油画特征获取
特征差异计算
油画特征融合
基于加权深度支持向量数据描述的工业过程故障检测
动态建模
过程系统
算法
故障检测
深度学习
支持向量数据描述
非线性过程
加权因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度视觉的筛板故障智能检测方法研究
来源期刊 选煤技术 学科
关键词 脱介筛 筛板故障智能检测 TOF相机 检测准确率
年,卷(期) 2020,(2) 所属期刊栏目 自动化与智能化
研究方向 页码范围 96-100
页数 5页 分类号 TD456
字数 语种 中文
DOI 10.16447/j.cnki.cpt.2020.02.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭晨 上海大学机电工程与自动化学院 13 18 2.0 4.0
2 杨明锦 上海大学机电工程与自动化学院 5 0 0.0 0.0
3 郑伟 上海大学机电工程与自动化学院 1 0 0.0 0.0
4 张帅帅 上海大学机电工程与自动化学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (90)
共引文献  (484)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(3)
  • 参考文献(0)
  • 二级参考文献(3)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脱介筛
筛板故障智能检测
TOF相机
检测准确率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
选煤技术
双月刊
1001-3571
13-1115/TD
大16开
1973-01-01
chi
出版文献量(篇)
3584
总下载数(次)
0
总被引数(次)
16138
论文1v1指导