基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于深度可分离卷积神经网络(Depthwise Separable Convolutional Neural Network,DS-CNN)设计一个嵌入式离线语音门禁系统.系统首先利用深度学习库TensorFlow搭建DS-CNN声学模型并完成模型训练,然后将训练好的模型移植到嵌入式平台实现离线式语音识别,最后根据识别结果控制继电器执行相应动作.为避免人工设计的滤波器在特征提取时造成信息损失,系统采用语音信号的语谱图作为声学模型输入,通过多层卷积单元自动提取说话人语音特征进行分类判断,并引入语音唤醒机制,保证系统的安全性和低能耗.系统测试结果表明,该门禁系统1次识别成功率达95%以上,平均响应时间满足设计要求,具有较好的实用性.
推荐文章
基于SPCE061A语音识别门禁系统实现的研究
语音识别
特征提取
SPCE061A
智能门禁
基于深度学习的移动学习平台系统设计
移动学习平台
深度学习
系统设计
资源搜索
构建学习模型
对比验证
应用深度学习的智能门禁系统设计
深度学习
人脸识别
门禁系统
语音合成
基于RFID的智能门禁系统设计
REID
ATmega8
FMl702SL
门禁系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的语音门禁系统设计
来源期刊 上海工程技术大学学报 学科 工学
关键词 深度可分离卷积神经网络 语音门禁系统 嵌入式平台 语音唤醒
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 253-257
页数 5页 分类号 TN912.34
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (7)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度可分离卷积神经网络
语音门禁系统
嵌入式平台
语音唤醒
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海工程技术大学学报
季刊
1009-444X
31-1598/T
16开
上海市松江大学城龙腾路333号
1987
chi
出版文献量(篇)
1693
总下载数(次)
1
总被引数(次)
7684
论文1v1指导