作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于多尺度变换域图像细化可降低图像存储难度与识别难度,图像细化核心即为骨架连通性,围绕保持图像骨架高度连通性这一宗旨,提出基于奇异值分解的多尺度变换域图像细化算法.首先,通过采用基于小波多尺度奇异值分解的图像特征提取算法,全面提取多尺度变换域图像中全部目标特征.然后,通过采用一种有效的图像细化算法判断图像细化时需留下的特征点,并去除图像中冗余像素点与冗余枝线,完成多尺度变换域图像细化.最后,根据本文所提算法将多尺度变换域图像以指纹、不规则图像等为例,对两幅图像细化,进行图像的细化测试.研究结果表明,所提算法细化后的图像纹理清楚,骨架分明,且图像纹络连通性较好;与同类型算法相比,该算法对多尺度变换域图像中冗余像素点和枝线的去除效果最佳.
推荐文章
基于混合变换域的奇异值分解水印算法
离散小波变换
离散余弦变换
奇异值分解
数字水印
基于奇异值分解和Contourlet变换的图像压缩算法
奇异值分解
Contourlet变化
图像压缩
基于奇异值分解的多小波域灰度图像水印算法
数字水印
Arnold置乱
奇异值分解
离散多小波变换
基于奇异值分解和小波变换的图像压缩算法
故障诊断
奇异值分解
小波变换
图像压缩
霍夫曼编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于奇异值分解的多尺度变换域图像细化算法
来源期刊 山东农业大学学报(自然科学版) 学科 工学
关键词 奇异值 图像 算法
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 262-265
页数 4页 分类号 TP391.41
字数 3571字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈丹萍 苏州信息职业技术学院计算机科学与技术系 13 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (166)
共引文献  (39)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(16)
  • 参考文献(0)
  • 二级参考文献(16)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(19)
  • 参考文献(0)
  • 二级参考文献(19)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(15)
  • 参考文献(0)
  • 二级参考文献(15)
2014(22)
  • 参考文献(0)
  • 二级参考文献(22)
2015(17)
  • 参考文献(0)
  • 二级参考文献(17)
2016(12)
  • 参考文献(3)
  • 二级参考文献(9)
2017(10)
  • 参考文献(5)
  • 二级参考文献(5)
2018(5)
  • 参考文献(4)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
奇异值
图像
算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东农业大学学报(自然科学版)
双月刊
1000-2324
37-1132/S
大16开
山东泰安市岱宗大街61号农业大学学报编辑部
1955
chi
出版文献量(篇)
3505
总下载数(次)
10
总被引数(次)
29464
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导