基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
洞库类目标是高价值识别目标,针对洞库类目标样本数据难以获得、样本内部数据相似度较高、人工设计识别特征方法局限性较大、普通深度网络需要海量数据等问题,提出了结合元学习和深度卷积网络的元-卷积网络(MCNN),并融合持续学习理论的洞库类目标识别方法(MCNN-LLS).首先结合深度卷积网络、元学习的理论建立元-卷积网络,该网络可利用旧知识指导新知识的训练,利用小样本数据即可训练得到识别能力较高的深度洞库模型;然后融合持续学习理论,建立持续学习系统(LLS),设计专家审核模型判别深度洞库模型的识别结果,并引入潜在任务、模型异步更新等方法,达到模型持续学习、持续更新的效果.实验表明,本文方法所需样本数量少,对洞库类目标识别准确率高,且识别能力可随识别过程中新数据的积累逐步提高.
推荐文章
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
一种融合ESM和红外传感器的飞机目标识别方法
ESM
红外传感器
模糊集理论
DS证据理论
目标识别
一种新型卷积神经网络植物叶片识别方法
DCGAN
数据扩充
图像识别
迁移学习
卷积神经网络
基于多传感器数据融合的目标识别方法
目标识别
D-S理论
数据融合系统(DFS)
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种元-卷积网络和持续学习融合的洞库类目标识别方法
来源期刊 北京理工大学学报 学科 工学
关键词 洞库类目标 目标识别 深度卷积网络 元学习 持续学习
年,卷(期) 2020,(6) 所属期刊栏目 信息与控制
研究方向 页码范围 655-660
页数 6页 分类号 TP751
字数 3811字 语种 中文
DOI 10.15918/j.tbit1001-0645.2019.148
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈科山 北京交通大学机械与电子控制工程学院 15 36 4.0 5.0
2 贾博然 北京交通大学机械与电子控制工程学院 2 0 0.0 0.0
3 薛旭 北京交通大学机械与电子控制工程学院 2 0 0.0 0.0
4 宋鹏亮 北京交通大学机械与电子控制工程学院 2 0 0.0 0.0
5 梅育青 北京交通大学机械与电子控制工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (441)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(7)
  • 参考文献(4)
  • 二级参考文献(3)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
洞库类目标
目标识别
深度卷积网络
元学习
持续学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京理工大学学报
月刊
1001-0645
11-2596/T
大16开
北京海淀区中关村南大街5号
82-502
1956
chi
出版文献量(篇)
5642
总下载数(次)
13
总被引数(次)
57269
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导