基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Since gas turbine plays a key role in electricity power generating,the requirements on the safety and reliability of this classical thermal system are becoming gradually strict.With a large amount of renewable energy being integrated into the power grid,the request of deep peak load regulation for satisfying the varying demand of users and maintaining the stability of the whole power grid leads to more unstable working conditions of gas turbines.The startup,shutdown,and load fluctuation are dominating the operating condition of gas turbines.Hence simulating and analyzing the dynamic behavior of the engines under such instable working conditions are important in improv-ing their design,operation,and maintenance.However,conventional dynamic simulation methods based on the physic differential equations is unable to tackle the uncertainty and noise when faced with variant real-world operations.Although data-driven simulating methods,to some extent,can mitigate the problem,it is impossible to perform simulations with insufficient data.To tackle the issue,a novel transfer learning framework is proposed to transfer the knowledge from the physics equation domain to the real-world application domain to compensate for the lack of data.A strong dynamic operating data set with steep slope signals is created based on physics equations and then a feature similarity-based learning model with an encoder and a decoder is built and trained to achieve feature adaptive knowledge transferring.The simulation accuracy is significantly increased by 24.6%and the predicting error reduced by 63.6%compared with the baseline model.Moreover,compared with the other classical transfer learning modes,the method proposed has the best simulating performance on field testing data set.Furthermore,the effect study on the hyper parameters indicates that the method proposed is able to adaptively balance the weight of learning knowledge from the physical theory domain or from the real-world operation domain.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Dynamic simulation of gas turbines via feature similarity-based transfer learning
来源期刊 能源前沿 学科
关键词
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 817-835
页数 19页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (1)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(16)
  • 参考文献(4)
  • 二级参考文献(12)
2017(23)
  • 参考文献(4)
  • 二级参考文献(19)
2018(15)
  • 参考文献(4)
  • 二级参考文献(11)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
能源前沿
季刊
2095-1701
11-6017/TK
北京市朝阳区惠新东街4号富盛大厦15层
eng
出版文献量(篇)
843
总下载数(次)
1
总被引数(次)
1099
论文1v1指导