基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<div style="text-align:justify;"> Knowledge tracking model has been a research hotspot in the field of educational data mining for a long time. Knowledge tracking can automatically discover students’ weak knowledge points, which helps to improve students’ self-motivation in learning and realize personalized guidance. The existing KT model has some shortcomings, such as the limitation of the calculation of knowledge growth, and the imperfect forgetting mechanism of the model. To this end, we proposed a new knowledge tracking model based on learning process (LPKT), LPKT applies the idea of Memory Augmented Neural Net-work(MANN).When we model the learning process of students, two additional important factors are considered. One is to consider the current state of knowledge of the students when updating the dynamic matrix of the neural network, and the other is to improve the forgetting mechanism of the model. In this paper we verified the effectiveness and superiority of LPKT through comparative experiments, and proved that the model can improve the effect of knowledge tracking and make the process of deep knowledge tracking easier to understand. </div>
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
处理多介质界面的改进型 Front Tracking 方法
界面拓扑结构
Front Tracking 方法
界面捕捉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Knowledge Tracking Model Based on Learning Process
来源期刊 电脑和通信(英文) 学科 文学
关键词 Knowledge Tracking Deep Learning Memory Augmented Neural Network
年,卷(期) dnhtxyw_2020,(10) 所属期刊栏目
研究方向 页码范围 7-17
页数 11页 分类号 H31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Knowledge
Tracking
Deep
Learning
Memory
Augmented
Neural
Network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
论文1v1指导