基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对常规卷积神经网络(Convolutional Neural Networks,CNN)在井少地区因无法获得大量测井数据而易于出现过拟合现象的问题,提出了一种小样本CNN井震映射反演方法.通过网络结构优化设计,选出了最佳的网络层数、卷积核大小、特征图规模和激活函数,并将优选出的最好网络模型应用于实际资料反演.实际应用表明,小样本CNN井震映射反演方法可以防止过拟合、提高泛化能力和反演精度,为精细刻画薄互层油气藏的空间展布提供了一项智能化的新技术.
推荐文章
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于卷积神经网络的玉米病害小样本识别研究
玉米病害
迁移学习
小样本
卷积神经网络
Focal Loss
混淆矩阵
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
采用多通道样本和深度卷积神经网络的轴承故障诊断方法
轴承故障诊断
三通道样本
深度卷积神经网络
连续小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小样本卷积神经网络井震映射反演
来源期刊 西安石油大学学报(自然科学版) 学科 地球科学
关键词 井震联合反演 卷积神经网络 小样本学习
年,卷(期) 2020,(4) 所属期刊栏目 地质与勘探
研究方向 页码范围 30-38
页数 9页 分类号 P618.130.2+1
字数 4120字 语种 中文
DOI 10.3969/j.issn.1673-064X.2020.04.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (15)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(5)
  • 参考文献(0)
  • 二级参考文献(5)
1996(7)
  • 参考文献(1)
  • 二级参考文献(6)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
井震联合反演
卷积神经网络
小样本学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安石油大学学报(自然科学版)
双月刊
1673-064X
61-1435/TE
大16开
西安市南郊电子二路18号
1959
chi
出版文献量(篇)
2967
总下载数(次)
4
总被引数(次)
29672
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导