作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
车牌识别是智能交通中非常重要的应用,而车牌检测又是车牌识别的关键.针对现有的车牌识别系统在遇到复杂条件,例如暗光、遮挡、多车牌、能见度低等情况时,难以有效地定位车牌,提出了基于Faster-RCNN目标检测模型与ZF、VGG-16以及ResNet-1013种卷积神经网络分别结合的方法.由于车牌没有公开的数据库,在自己准备的12740张车牌图像上进行实验,结果显示基于Faster-RCNN与ResNet-101结合的模型的准确率达到了97.2%,高于其余两种结合模型,明显优于传统的车牌检测方法,并避免了复杂的预处理,具有较好的实用性.
推荐文章
基于Faster-RCNN的回环检测优化算法
三维重建
同时定位与地图构建
回环检测
神经网络
词袋模型
优化算法
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
基于Faster rcnn的棉麻纱混纺比自动检测
Faster rcnn
目标检测
棉纤维
麻纤维
混纺比
图像
模型
基于Faster-RCNN的遥感图像飞机检测算法
遥感图像
飞机检测
Faster-RCNN
残差网络
区域建议网络
在线困难样本挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Faster-RCNN的车牌检测
来源期刊 计算机与数字工程 学科 航空航天
关键词 车牌检测 Faster-RCNN ZF VGG-16 ResNet-101
年,卷(期) 2020,(1) 所属期刊栏目 图像处理
研究方向 页码范围 174-177
页数 4页 分类号 V448.25
字数 2708字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.01.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 艾曼 华中科技大学自动化学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (90)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车牌检测
Faster-RCNN
ZF
VGG-16
ResNet-101
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导